The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin.

نویسندگان

  • Filip Vandenbussche
  • Jan Smalle
  • Jie Le
  • Nelson José Madeira Saibo
  • Annelies De Paepe
  • Laury Chaerle
  • Olaf Tietz
  • Raphael Smets
  • Lucas J J Laarhoven
  • Frans J M Harren
  • Harry Van Onckelen
  • Klaus Palme
  • Jean-Pierre Verbelen
  • Dominique Van Der Straeten
چکیده

Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings.

Dark-grown dicotyledonous seedlings form a hook-like structure at the top of the hypocotyl, which is controlled by the hormones auxin and ethylene. Hook formation is dependent on an auxin signal gradient, whereas hook exaggeration is part of the triple response provoked by ethylene in dark-grown Arabidopsis seedlings. Several other hormones and light are also known to be involved in hook develo...

متن کامل

Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression

The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However,...

متن کامل

A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis.

Although auxin response factors (ARFs) are the first well-characterized proteins that bind to the auxin response elements, elucidation of the roles of each ARF gene in auxin responses and plant development has been challenging. Here we show that ARF19 and ARF7 not only participate in auxin signaling, but also play a critical role in ethylene responses in Arabidopsis (Arabidopsis thaliana) roots...

متن کامل

Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.

Strigolactones (SLs) or derivatives thereof have been identified as phytohormones, and shown to act as long-distance shoot-branching inhibitors. In Arabidopsis roots, SLs have been suggested to have a positive effect on root-hair (RH) elongation, mediated via the MAX2 F-box. Two other phytohormones, auxin and ethylene, have been shown to have positive effects on RH elongation. Hence, in the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2003